Effects of isoproterenol on myocardial structure and function in septic rats.

Journal of applied physiology (Bethesda, Md. : 1985)

PubMedID: 10066715

Piper RD, Li FY, Myers ML, Sibbald WJ. Effects of isoproterenol on myocardial structure and function in septic rats. J Appl Physiol. 1999;86(3):993-1001.
In this study we sought to determine the effect of sepsis on two sequelae of prolonged (24-h) beta-agonist administration, myocardial hypertrophy and catecholamine-induced cardiotoxicity. Sprague-Dawley rats were randomized to cecal ligation and perforation (CLP) or sham study groups and then further randomized to receive isoproterenol (2.4 mg. kg-1. day-1 iv) or placebo treatment. At 24 h, myocardial function was assessed by using the Langendorff isolated-heart technique or the heart processed for plain light microscopy. We found that 1) sepsis reduced contractile function, indicated by a rightward shift in the Starling curve (ANOVA with repeated measures, sepsis effect, P < 0.002); 2) sepsis-induced myocardial depression was reversed by isoproterenol treatment (isoproterenol effect, P < 0.0001); 3) sepsis reduced, but did not block, isoproterenol-induced myocardial hypertrophy (isoproterenol effect, P < 0.0001); 4) sepsis did not protect the heart from catecholamine-induced tissue injury; 5) the septic heart was protected against the effects of ischemiareperfusion (decreased postreperfusion resting tension, ANOVA with repeated measures, P < 0.01), an effect attenuated by isoproterenol treatment (P < 0.005); and 6) sepsis reduced the incidence of sustained asystole or ventricular fibrillation after ischemia-reperfusion (P < 0.05), an effect also attenuated by isoproterenol treatment (P < 0.01). We conclude that, in sepsis, beta-agonists induce changes in myocardial weight and function consistent with acute myocardial hypertrophy. These changes occur at the expense of significant tissue injury and increased sensitivity to ischemia-reperfusion-induced tissue injury.