[Effect of Qingyi Decoction on gene expression profiles of severe acute pancreatitis rats by gene chip technique].

Zhongguo Zhong xi yi jie he za zhi Zhongguo Zhongxiyi jiehe zazhi = Chinese journal of integrated traditional and Western medicine / Zhongguo Zhong xi yi jie he xue hui, Zhongguo Zhong yi yan jiu yuan zhu ban

PubMedID: 24520788

Zhu FS, Zhu GY, Huang DP, Shen XY, Yang CQ, Gao HJ. [Effect of Qingyi Decoction on gene expression profiles of severe acute pancreatitis rats by gene chip technique]. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2014;34(1):51-5.
OBJECTIVE
To investigate the effect of Qingyi Decoction (QYD) on pancreatic gene expression profiles in rats with severe acute pancreatitis (SAP).

METHODS
Totally 60 Sprague-Dawley (SD) rats were randomly divided into the sham-operation group (SO group), the SAP group, and the QYD group, 20 in each group. SAP model was replicated by the pancreatic duct retrograde injection with 4% sodium taurocholate. Rats in the QYD group was intragastrically intervened by QYD (0.75 mL/100 g) for 3 times. Pancreatic RNA expression was analyzed using Illumina whole genome expression profiles. Changes of mRNA and protein in specific genes [heat shock proteins a8 (Hspa8) and heat shock proteins b1 (Hspb1)] were verified by real-time quantitative PCR and Western blot analysis.

RESULTS
Compared with the SAP group, 575 differential genes were screened in the QYD group, including 92 up-regulated genes and 483 down-regulated genes. Gene Ontology (GO) categories indicated the genes are associated with negative regulation of transcription regulator activity, oxidoreductase activity and enzyme in- hibitor activity. Effects of QYD on the SAP rats were majorly related to mitogen-activated protein kinase (MAPK), NOD like receptors (NLR) receptor-like signaling pathway, cell cycle, metabolic pathways, oxidoreductase activity. Protein and mRNA changes of Hspa8 and Hspb1 in microarray were verified [relative mRNA expression for Hspa8 and Hspb1 was increased by (13.24 +/- 1.22) times and (7.55 +/- 1.09) times respectively, P < 0.01].

CONCLUSION
QYD was effective in treating experimental SAP involved the MAPK and NLR signaling pathways, cell cycle, metabolic pathways, and oxide reductase activities.