Ballistic parameters and trauma potential of pistol crossbows.

International journal of legal medicine

PubMedID: 23232541

Frank M, Schikorr W, Tesch R, Werner R, Hanisch S, Peters D, Ekkernkamp A, Bockholdt B, Seifert J. Ballistic parameters and trauma potential of pistol crossbows. Int J Legal Med. 2013;127(4):777-82.
Hand-held pistol crossbows, which are smaller versions of conventional crossbows, have recently increased in popularity. Similar to conventional crossbows, life threatening injuries due to bolts discharged from pistol crossbows are reported in forensic and traumatological literature. While the ballistic background of conventional crossbows is comprehensively investigated, there are no investigations on the characteristic ballistic parameters (draw force, potential energy, recurve factor, kinetic energy, and efficiency) of pistol crossbows. Two hand-held pistol crossbows (Barnett Commando and Mini Cross Bow, rated draw force 362.9 N or 80 lbs) were tested. The maximum draw force was investigated using a dynamic tensile testing machine (TIRAtest 2705, TIRA GmbH). The potential energy was determined graphically by polynomial regression as area under the force-draw curve. External ballistic parameters of the bolts discharged from pistol crossbows were measured using a redundant ballistic speed measurement system (Dual-BMC 21a and Dual-LS 1000, Werner Mehl Kurzzeitmesstechnik). The average maximum draw force was 190.3 and 175.6 N for the Barnett and Mini Cross Bow, respectively. The corresponding total energy expended was 10.7 and 11 J, respectively. The recurve factor was calculated to be 0.705 and 1.044, respectively. Average bolt velocity was measured 43 up to 52 m/s. The efficiency was calculated up to 0.94. To conclude, this work provides the pending ballistic data on this special subgroup of crossbows which operate on a remarkable low kinetic energy level. Furthermore, it demonstrates that the nominal draw force pretended in the sales brochure is grossly exaggerated.