Cholecalciferol attenuates perseverative behavior associated with developmental alcohol exposure in rats in a dose-dependent manner.

The Journal of steroid biochemistry and molecular biology

PubMedID: 23104117

Idrus NM, Happer JP, Thomas JD. Cholecalciferol attenuates perseverative behavior associated with developmental alcohol exposure in rats in a dose-dependent manner. J Steroid Biochem Mol Biol. 2013;136146-9.
Alcohol is a known teratogen that is estimated to affect 2-5% of the births in the U.S. Prenatal alcohol exposure can produce physical features such as facial dysmorphology, physiological alterations such as cell loss in the central nervous system (CNS), and behavioral changes that include hyperactivity, cognitive deficits, and motor dysfunction. The range of effects associated with prenatal alcohol exposure is referred to as fetal alcohol spectrum disorders (FASD). Despite preventative measures, some women continue to drink while pregnant. Therefore, identifying interventions that reduce the severity of FASD is critical. This study investigated one such potential intervention, vitamin D3, a nutrient that exerts neuroprotective properties. The present study determined whether cholecalciferol, a common vitamin D3 nutritional supplement, could serve as a means of mitigating alcohol-related learning deficits. Using a rat model of FASD, cholecalciferol was given before, during, and after 3rd trimester equivalent alcohol exposure. Three weeks after cholecalciferol treatment, subjects were tested on a serial spatial discrimination reversal learning task. Animals exposed to ethanol committed significantly more errors compared to controls. Cholecalciferol treatment reduced perseverative behavior that is associated with developmental alcohol exposure in a dose-dependent manner. These data have important implications for the treatment of FASD and suggest that cholecalciferol may reduce some aspects of FASD. This article is part of a Special Issue entitled 'Vitamin D Workshop'.