Network visualization and network analysis.


PubMedID: 17432271

Nikiforova VJ, Willmitzer L. Network visualization and network analysis. EXS. 2007;97245-75.
Network analysis of living systems is an essential component of contemporary systems biology. It is targeted at assemblance of mutual dependences between interacting systems elements into an integrated view of whole-system functioning. In the following chapter we describe the existing classification of what is referred to as biological networks and show how complex interdependencies in biological systems can be represented in a simpler form of network graphs. Further structural analysis of the assembled biological network allows getting knowledge on the functioning of the entire biological system. Such aspects of network structure as connectivity of network elements and connectivity degree distribution, degree of node centralities, clustering coefficient, network diameter and average path length are touched. Networks are analyzed as static entities, or the dynamical behavior of underlying biological systems may be considered. The description of mathematical and computational approaches for determining the dynamics of regulatory networks is provided. Causality as another characteristic feature of a dynamically functioning biosystem can be also accessed in the reconstruction of biological networks; we give the examples of how this integration is accomplished. Further questions about network dynamics and evolution can be approached by means of network comparison. Network analysis gives rise to new global hypotheses on systems functionality and reductionist findings of novel molecular interactions, based on the reliability of network reconstructions, which has to be tested in the subsequent experiments. We provide a collection of useful links to be used for the analysis of biological networks.