Paired pulse ratio analysis of insulin-induced synaptic plasticity in the snail brain.

The Journal of experimental biology

PubMedID: 23393274

Murakami J, Okada R, Fujito Y, Sakakibara M, Lukowiak K, Ito E. Paired pulse ratio analysis of insulin-induced synaptic plasticity in the snail brain. J Exp Biol. 2013;216(Pt 10):1771-3.
Insulin's action in the brain can directly alter cognitive functioning. We have recently shown that molluscan insulin-related peptides are upregulated following a conditioned taste aversion (CTA) training procedure. In addition, when mammalian insulin is superfused over the isolated Lymnaea stagnalis central nervous system, it elicits long-term synaptic enhancement at the monosynaptic connection between the cerebral giant cell and the buccal 1 (B1) motor neuron. This synaptic enhancement is thought to be a neural correlate of CTA. Here, we examined whether the observed changes in synaptic plasticity were the result of presynaptic and/or postsynaptic alterations using the paired pulse procedure. The paired pulse ratio was unaltered following insulin application, suggesting that insulin's effects on synaptic plasticity are mediated postsynaptically in the B1 motor neuron. Thus, it was suggested that postsynaptic changes need to be considered when insulin's actions on synaptic plasticity are examined.