Production of chimeras between the Chinese soft-shelled turtle and Peking duck through transfer of early blastoderm cells.

The Journal of experimental biology

PubMedID: 23348946

Zhang W, Rui L, Zhang J, Yu X, Yuan F, Yan L, Zhang Z, Wan Z, Shao Q, Qi C, Li Z. Production of chimeras between the Chinese soft-shelled turtle and Peking duck through transfer of early blastoderm cells. J Exp Biol. 2013;216(Pt 10):1786-92.
Chimeras are useful models for studies of developmental biology and cell differentiation. Intraspecies and interspecies germline chimeras have been produced in previous studies, but the feasibility of producing chimeras between animals of two different classes remains unclear. To address this issue, we attempted to produce chimeras between the Chinese soft-shelled turtle and the Peking duck by transferring stage X blastoderm cells to recipient embryos. We then examined the survival and development of the PKH26-labeled donor cells in the heterologous embryos. At early embryonic stages, both turtle and duck donor cells that were labeled with PKH26 were readily observed in the brain, neural tube, heart and gonads of the respective recipient embryos. Movement of turtle donor-derived cells was observed in the duck host embryos after 48 h of incubation. Although none of the hatchlings presented a chimeric phenotype, duck donor-derived cells were detected in a variety of organs in the hatchling turtles, particularly in the gonads. Moreover, in the hatched turtles, mRNA expression of tissue-specific duck genes MEF2a and MEF2c was detected in many tissues, including the muscle, heart, small and large intestines, stomach and kidney. Similarly, SPAG6 mRNA was detected in a subset of turtle tissues, including the gonad and the small and large intestines. These results suggest that duck donor-derived cells can survive and differentiate in recipient turtles; however, no turtle-derived cells were detected in the hatched ducks. Our findings indicate that chimeras can be produced between animals of two different classes.