Antipsychotic medications, glutamate, and cell death: a hidden, but common medication side effect?

Medical hypotheses

PubMedID: 23265349

Isom AM, Gudelsky GA, Benoit SC, Richtand NM. Antipsychotic medications, glutamate, and cell death: a hidden, but common medication side effect?. Med Hypotheses. 2013;80(3):252-8.
We hypothesize the interaction between antipsychotic medications and regulation of extracellular glutamate which has gone largely unnoticed in the medical community has significant clinical importance. Typical antipsychotic medications such as haloperidol elevate extracellular glutamate because they exert antagonist effects on dopamine D(2) and serotonin 5HT(1A) receptors. In contrast, serotonin 5HT(2A) receptor antagonists inhibit glutamate release. Glutamate is potentially excitotoxic through effects on ionotropic receptor channels and may exert synergistic effects with other neurotoxic pathways. In contrast to typical antipsychotic drugs, pharmacological properties of atypical antipsychotic medications at dopamine D(2), serotonin 5HT(1A) and 5HT(2A) receptors limit extracellular glutamate and may theoretically be neuroprotective in certain clinical settings. In this review we discuss three common clinical settings in which typical antipsychotic medications may potentiate neurotoxicity by elevating extracellular glutamate. The most common clinical setting, hypoglycemia during combined use of antipsychotic medications and insulin, presents a theoretical risk for 35 million diabetic patients worldwide using antipsychotic medications. Antipsychotic medication treatment during hypoxic episodes in the intensive care unit and following traumatic brain injury are two other common clinical settings in which this interaction poses theoretical risk. Further study is needed to test hypothesized risk mechanisms, and determine clinical and epidemiological consequences of these exposures.