Determination of plasma microRNA for early detection of gastric cancer.

Molecular biology reports

PubMedID: 23212612

Gorur A, Balci Fidanci S, Dogruer Unal N, Ayaz L, Akbayir S, Yildirim Yaroglu H, Dirlik M, Serin MS, Tamer L. Determination of plasma microRNA for early detection of gastric cancer. Mol Biol Rep. 2013;40(3):2091-6.
Gastric cancer is the fourth most prevalent malignancy worldwide and remains the second most common cause of cancer-related death globally. Understanding the molecular structure of gastric carcinogenesis might identify new diagnostic and therapeutic strategies for this disease. Thus, early detection of gastric cancer is a key measure to reduce the mortality and improve the prognosis of gastric cancer. There have recently been several reports that microRNAs (miRNAs) circulate in highly stable, cell-free forms in blood. Because serum and plasma miRNAs are relatively easy to access, circulating miRNAs also have great potential to serve as non-invasive biomarkers. Although a number of miRNAs associated with gastric cancer have been identified, the underlying mechanism of these miRNAs in tumorigenesis and tumor progression remains to be investigated. The purpose of this study is to identify the potential of serum miRNAs as biomarkers for early detection of gastric cancer patients. RNA was isolated using the High Pure miRNA Isolation Kit (Roche) following the manufacturer's protocol. cDNA and preamplification protocols were obtained from the isolated plasma miRNAs. The BioMark™ 96.96 Dynamic Array (Fluidigm Corporation) for real-time qPCR was used to simultaneously quantite the expression of 740 miRNAs. All statistical analyses were performed using the Biogazelle's qbase PLUS 2.0 software. In this study, among 740 miRNAs that we analyzed only miR-195-5p was significantly (p < 0.05, fold changes = 13, 3) down-regulated in gastric cancer patients compared with control. We demonstrated that miR-195-5p is a novel tumor suppressor miRNA and may contribute to gastric carcinogenesis. The miRNA expression profile described in this study should contribute to future studies on the role of miRNAs in gastric cancer.