Microbial transformation of heterocyclic molecules in deep subsurface sediments.

Microbial ecology

PubMedID: 24194345

Shanker R, Kaiser JP, Bollag JM. Microbial transformation of heterocyclic molecules in deep subsurface sediments. Microb Ecol. 1991;22(1):305-16.
Recently attempts have been made to establish the presence and to determine the metabolic versatility of microorganisms in the terrestrial deep subsurface at the Savannah River Plant, Aiken, SC, USA. Sediment samples obtained at 20 different depths of up to 526 m were examined to determine carbon mineralization under aerobic, sulfate-reducing, and methanogenic conditions. The evolution of(14)CO2 from radiolabelled glucose was observed under aerobic conditions in all sediments, whereas pyridine was transformed in 50% of the 20 sediments and indole was metabolized in 85% of the sediments. Glucose mineralization in certain sediments was comparable to that in the surface environment. Sulfate was reduced in only five sediments, and two were carbon limited. Methane production was detected in ten sediments amended with formate only after long-term incubations. The transformation of indole and pyridine was only rarely observed under sulfate-reducing conditions and was never detected in methanogenic incubations. This study provides information concerning the metabolic capability of both aerobic and anaerobic microorganisms in the deep subsurface and may prove useful in determining the feasibility of microbial decontamination of such environments.