Eosinophils and the ovalbumin mouse model of asthma.

Methods in molecular biology (Clifton, N.J.)

PubMedID: 24986625

Daubeuf F, Frossard N. Eosinophils and the ovalbumin mouse model of asthma. Methods Mol Biol. 2014;1178283-93.
Mouse models of asthma are essential to understand asthma pathogenesis and eosinophil recruitment in the airways, and to develop new therapeutic strategies. Animal models try to mimic features of the human disease including airway hyperresponsiveness (AHR), eosinophilic inflammation, and remodeling, which are the typical asthma-related characteristics. The mouse is now the species of choice for asthma research due to the availability of transgenic animals and a wide array of specific reagents and techniques available. Cellular responses may be studied with innovative imaging and flow cytometry methods while lung mechanics may be precisely measured by the forced oscillation technique, and airway responsiveness approached by barometric plethysmography in conscious and unconstrained animals. Here, we describe procedures to generate acute models of hypereosinophilic asthma in mice, with ovalbumin (OVA) as the allergen. The presented allergic asthma models offer a large and reproducible eosinophil recruitment, measured in the bronchoalveolar lavage (BAL), accompanied with AHR, inflammation, and remodeling, and are particularly suited to assess the activity of drug candidates. We here present the classical 21-day allergic asthma model to OVA, and adjustments for a rapid 8-day model of airway allergic hypereosinophilia, and a more chronic 57-day model suitable for C57BL/6 mice to develop AHR together with airway eosinophilic inflammation and remodeling.