[The uncertainty evaluation of analytical results of 27 elements in geological samples by X-ray fluorescence spectrometry].

Guang pu xue yu guang pu fen xi = Guang pu

PubMedID: 25007641

Wang YY, Zhan XC. [The uncertainty evaluation of analytical results of 27 elements in geological samples by X-ray fluorescence spectrometry]. Guang Pu Xue Yu Guang Pu Fen Xi. 2014;34(4):1118-23.
Evaluating uncertainty of analytical results with 165 geological samples by polarized dispersive X-ray fluorescence spectrometry (P-EDXRF) has been reported according to the internationally accepted guidelines. One hundred sixty five pressed pellets of similar matrix geological samples with reliable values were analyzed by P-EDXRF. These samples were divided into several different concentration sections in the concentration ranges of every component. The relative uncertainties caused by precision and accuracy of 27 components were evaluated respectively. For one element in one concentration, the relative uncertainty caused by precision can be calculated according to the average value of relative standard deviation with different concentration level in one concentration section, n = 6 stands for the 6 results of one concentration level. The relative uncertainty caused by accuracy in one concentration section can be evaluated by the relative standard deviation of relative deviation with different concentration level in one concentration section. According to the error propagation theory, combining the precision uncertainty and the accuracy uncertainty into a global uncertainty, this global uncertainty acted as method uncertainty. This model of evaluating uncertainty can solve a series of difficult questions in the process of evaluating uncertainty, such as uncertainties caused by complex matrix of geological samples, calibration procedure, standard samples, unknown samples, matrix correction, overlap correction, sample preparation, instrument condition and mathematics model. The uncertainty of analytical results in this method can act as the uncertainty of the results of the similar matrix unknown sample in one concentration section. This evaluation model is a basic statistical method owning the practical application value, which can provide a strong base for the building of model of the following uncertainty evaluation function. However, this model used a lot of samples which cannot simply be applied to other types of samples with different matrix samples. The number of samples is too large to adapt to other type's samples. We will strive for using this study as a basis to establish a reasonable basis of mathematical statistics function mode to be applied to different types of samples.