Purification and characterization of yeast L-kynurenine aminotransferase with broad substrate specificity.

Journal of biochemistry

PubMedID: 3086302

Asada Y, Sawa Y, Tanizawa K, Soda K. Purification and characterization of yeast L-kynurenine aminotransferase with broad substrate specificity. J Biochem. 1986;99(4):1101-10.
L-Kynurenine aminotransferase [L-kynurenine:2-oxoglutarate aminotransferase (cyclizing), EC 2.6.1.7] has been purified to homogeneity and crystallized from cell-free extracts of a yeast, Hansenula schneggii, grown in a medium containing L-tryptophan as an inducer. The enzyme has a molecular weight of about 100,000 and consists of two subunits identical in molecular weight (52,000). The enzyme exhibits absorption maxima at 280, 335, and 430 nm, and contains 2 mol of pyridoxal 5'-phosphate per mol of enzyme. The enzyme-bound pyridoxal 5'-phosphate shows negative circular dichroic extrema, in contrast with other pyridoxal 5'-phosphate acting on L-amino acids. In addition to L-kynurenine and alpha-ketoglutarate, which are the most preferred substrates, a large number of L-amino acids and alpha-keto acids can serve as substrates; the extremely broad substrate specificity is the most characteristic feature of this yeast enzyme. The enzyme activity is significantly affected by both carbonyl and sulfhydryl reagents. Certain dicarboxylic acids such as adipate and pimelate act as competitive inhibitors. Addition of various substrate amino acids to the culture medium results in the inductive formation of aminotransferases which are immunochemically indistinguishable from L-kynurenine aminotransferase.