Dissociation from albumin: a potentially rate-limiting step in the clearance of substances by the liver.

Proceedings of the National Academy of Sciences of the United States of America

PubMedID: 3856281

Weisiger RA. Dissociation from albumin: a potentially rate-limiting step in the clearance of substances by the liver. Proc Natl Acad Sci USA. 1985;82(5):1563-7.
The hepatic uptake rate for certain albumin-bound drugs and metabolites correlates poorly with their equilibrium unbound concentration in the plasma, suggesting that binding equilibrium may not always exist within the hepatic sinusoids. Currently available models for the uptake process assume binding equilibrium and, thus, cannot be used to investigate this possibility. This report presents a more general model that treats plasma-bound and free concentrations separately. A solution is provided that specifies the hepatic uptake rate as a function of the total plasma concentrations of the transported substance and of binding protein and the rate constants for influx, efflux, elimination, association, dissociation, and flow. Analysis of this solution indicates that hepatic uptake may be limited by the rate of plasma flow, dissociation from the binding protein, influx into the liver, cellular elimination, or any combination of these processes. The affinity and concentration of the binding protein strongly influence which of these steps are rate-limiting in any given case, and binding equilibrium exists within the hepatic sinusoids only for binding protein concentrations greater than a specified value (the ratio of the uptake and association rate constants). The precise conditions under which each step is rate-limiting and the kinetic behavior expected when two or more steps mutually limit uptake are provided. The results are compatible with previously reported data for the uptake of certain albumin-bound ligands such as bilirubin, and they offer an alternative to attributing these kinetics to the presence of an albumin receptor.