Membrane transport during erythroid differentiation.

The Journal of membrane biology

PubMedID: 6799648

Gordon PB, Rubin MS. Membrane transport during erythroid differentiation. J Membr Biol. 1982;64(1-2):11-21.
Transport, unidirectional flux, of a monosaccharide, a nucleoside and three amino acids, all of which enter cells by independent, discrete carriers, was compared at three stages of erythroid maturation, the normal (anucleate) mouse erythrocyte, and in differentiated and undifferentiated Friend erythroleukemia cells. We found specific transport alterations during this developmental program. Transport of 3-O-methylglucose increased with each successive developmental stage. Aminoisobutyrate transport was maintained during Friend cell differentiation, but fell slightly in erythrocytes. Leucine, lysine and uridine transport began to fall two days after dimethylsulfoxide exposure, and diminished further in red cells. These studies of transport are not directly comparable to uptake studies reported by others. Median cell volume and thus surface area decreased more during differentiation than amino acid transport declined, so flux, transport past a unit area of membrane, actually increased. Monosaccharide flux also increased. Only uridine transport fell in parallel to surface area. Perhaps sites for nutrient transport required for energy production are preferentially maintained.