Site-specific modification of functional groups in genomic hepatitis delta virus (HDV) ribozyme.

European journal of biochemistry / FEBS

PubMedID: 12444967

Nishikawa F, Shirai M, Nishikawa S. Site-specific modification of functional groups in genomic hepatitis delta virus (HDV) ribozyme. Eur J Biochem. 2002;269(23):5792-803.
Human hepatitis delta (HDV) ribozyme is one of small ribozymes, such as hammerhead and hairpin ribozymes, etc. Its secondary structure shows pseudoknot structure composed of four stems (I to IV) and three single-stranded regions (SSrA, -B and -C). The 3D structure of 3'-cleaved product of genomic HDV ribozyme provided extensive information about tertiary hydrogen bonding interactions between nucleotide bases, phosphate oxygens and 2'OHs including new stem structure P1.1. To analyze the role of these hydrogen bond networks in the catalytic reaction, site-specific atomic-level modifications (such as deoxynucleotides, deoxyribosyl-2-aminopurine, deoxyribosylpurine, 7-deaza-ribonucleotide and inosine) were incorporated in the smallest trans-acting HDV ribozyme (47-mer). Kinetic analysis of these ribozyme variants demonstrated the importance of the two W-C base pairs of P1.1 for cleavage; in addition, the results suggest that all hydrogen bond interactions detected in the crystal structure involving 2'-OH and N7 atoms are present in the active ribozyme structure. In most of the variants, the relative reduction in kobs caused by substitution of the 2'-OH group correlated with the number of hydrogen bonds affected by the substitution. However G74 and C75 may have more than one hydrogen bond involving the 2'-OH in both the trans- and cis-acting HDV ribozyme. Moreover, in variants in which N7 was deleted, kobs was reduced 5- to 15-fold, it may suggest that N7 assists in coordinating Mg2+ ions or water molecules which bind with weak affinity in the active structure.