Effect of Bonding Agent Application Method on Titanium-Ceramic Bond Strength.

Journal of prosthodontics : official journal of the American College of Prosthodontists

PubMedID: 25314910

Curtis JG, Dossett J, Prihoda TJ, Teixeira EC. Effect of Bonding Agent Application Method on Titanium-Ceramic Bond Strength. J Prosthodont. 2014;.
Although milled titanium may be used as a substructure in fixed and implant prosthodontics, the application of the veneering porcelain presents particular challenges compared to traditional alloys. To address these challenges, some Ti ceramic systems incorporate the application of a bonding agent prior to the opaque layer. Vita Titankeramik's bonding agent is available as a powder, paste, and spray-on formulation. We examined the effect of these three application methods on the bond strength.

Four titanium bars were milled from each of 11 wafers cut from grade II Ti using the Kavo Everest milling unit and a custom-designed milling toolpath. An experienced technician prepared the 25 × 3 × 0.5 mm(3) metal bars and applied bonding agent using one of three application methods, and then applied opaque, dentin, and enamel porcelains according to manufacturer's instructions to a 8 × 3 × 1 mm(3) porcelain. A control group received no bonding agent prior to porcelain application. The four groups (n = 11) were blindly tested for differences in bond strength using a universal testing machine in a three-point bend test configuration, based on ISO 9693-1:2012.

The average (SD) bond strengths for the control, powder, paste, and spray-on groups, respectively, were: 24.8 (2.6), 24.6 (2.6), 25.3 (4.0), and 24.1 (3.9) MPa. One-way ANOVA and Tukey's multiple comparison tests were performed between all groups. There were no statistically significant differences among groups (p = 0.951).

Titanium-porcelain bond strength was not affected by the use of a bonding agent or its application method when tested by ISO 9693-1 standard.