Digital compensation of cross-phase modulation distortions using perturbation technique for dispersion-managed fiber-optic systems.

Optics express

PubMedID: 25321268

Liang X, Kumar S, Shao J, Malekiha M, Plant DV. Digital compensation of cross-phase modulation distortions using perturbation technique for dispersion-managed fiber-optic systems. Opt Express. 2014;22(17):20634-20645.
A digital compensation scheme based on a perturbation theory for mitigation of cross-phase modulation (XPM) distortions is developed for dispersion-managed fiber-optic communication systems. It is a receiver-side scheme that uses a hard-decision unit to estimate data for the calculation of XPM fields using the perturbation technique. The intra-channel nonlinear distortions are removed by intra-channel digital backward propagation (DBP) based on split-step Fourier scheme before the hard-decision unit. The perturbation technique is shown to be effective in mitigating XPM distortions. However, wrong estimations in the hard-decision unit result in performance degradation. A hard-decision correction method is proposed to correct the wrong estimations. Numerical simulations show that the hybrid compensation scheme with DBP for dispersion and intra-channel nonlinear impairments compensation and the perturbation technique for XPM compensation brings up to 3.7 dBQ and 1.7 dBQ improvements as compared with the schemes of linear compensation only and intra-channel DBP, respectively. The perturbation technique for XPM compensation requires only one-stage (or two-stage when hard-decision correction is applied) compensation and symbol-rate signal processing.