Human antimicrobial peptide LL-37 induces glial-mediated neuroinflammation.

Biochemical pharmacology

PubMedID: 25686659

Lee M, Shi X, Barron AE, McGeer E, McGeer PL. Human antimicrobial peptide LL-37 induces glial-mediated neuroinflammation. Biochem Pharmacol. 2015;.
LL-37 is the sole cathelicidin-derived antimicrobial peptide found in humans. It becomes active upon C-terminal cleavage of its inactive precursor hCAP18. In addition to antimicrobial action, it also functions as an innate immune system stimulant in many tissues of the body. Here we report that hCAP18 and LL-37 are expressed in all organs of the human body that were studied with the highest basic levels being expressed in the GI tract and the brain. It's expression and functional role in the central nerve system (CNS) has not previously been reported. We found increased expression of LL-37 in IFN?-stimulated human astrocytes and their surrogate U373 cells, as well as in LPS/IFN?-stimulated human microglia and their surrogate monocyte-derived THP-1 cells. We found that treatment of microglia, astrocytes, THP-1 cells and U373 cells with LL-37 induced secretion of the inflammatory cytokines IL-1ß and IL-6; the chemokines IL-8 and CCL-2, and other materials toxic to human neuroblastoma SH-SY5Y cells. The mechanism of LL-37 stimulation involves activation of intracellular proinflammatory pathways involving phospho-P38 MAP kinase and phospho-NF?B proteins. We blocked the inflammatory stimulant action of LL-37 by removing it with an anti-LL-37 antibody. The inflammatory effect was also prevented by treatment with inhibitors of PKC, PI3K and MEK-1/2 as well as with the intracellular Ca(2+)-chelator, BAPTA-AM. This indicates involvement of these intracellular pathways. Our data suggest that LL-37, in addition to its established roles, may play a role in the chronic neuroinflammation which is observed in neurodegenerative diseases such as Alzheimer's and Parkinson's disease.