Nanopharmaceutics: phytochemical-based controlled or sustained drug-delivery systems for cancer treatment.

Journal of biomedical nanotechnology

PubMedID: 25992442

Jeetah R, Bhaw-Luximon A, Jhurry D. Nanopharmaceutics: phytochemical-based controlled or sustained drug-delivery systems for cancer treatment. J Biomed Nanotechnol. 2014;10(9):1810-40.
This review is an attempt to assess the different classes of phytochemicals and some of their members which have been encapsulated into nanocarrier systems for their chemotherapeutic or chemopreventive properties. Given the broad spectrum of nanomedicines currently in clinical trial and clinical use from polymer-protein conjugates, through nanocrystals, nanogels, dendrimers to ethosomes, the focus of this review will be on block copolymer nanomicelles, nanoparticles, polymer-drug conjugates, liposomes and solid lipid nanocarriers (SLNs). The twenty phytochemicals investigated for encapsulation and targeted delivery were selected from a variety of classes intended to encompass the largest possible chemical compositions, namely flavonoids, aromatic acids, xanthones, terpenes, quinones, lignans and alkaloids. To the best of our knowledge, reviews on the nanoencapsulation of these phytochemicals and their delivery are not available. In this review, the issues associated with the limited use of each phytochemical in cancer therapy in humans are reviewed and the advantages of entrapment into nanocarriers are assessed in terms of drug loading efficiency, size of nanocarriers, drug release profiles and in vitro and/or in vivo testing specific to cancer research, e. g. , cytotoxicity assay, cell inhibition/viability, scavenging of reactive oxygen species and biodistribution studies (elimination half-life and mean residence time).