Passive stiffness of hindlimb muscles in anurans with distinct locomotor specializations.

Zoology (Jena, Germany)

PubMedID: 26006308

Danos N, Azizi E. Passive stiffness of hindlimb muscles in anurans with distinct locomotor specializations. Zoology (Jena). 2015;.
Anurans (frogs and toads) have been shown to have relatively compliant skeletal muscles. Using a meta-analysis of published data we have found that muscle stiffness is negatively correlated with joint range of motion when examined across mammalian, anuran and bird species. Given this trend across a broad phylogenetic sample, we examined whether the relationship held true within anurans. We identified four species that differ in preferred locomotor mode and hence joint range of motion (Lithobates catesbeianus, Rhinella marina, Xenopus laevis and Kassina senegalensis) and hypothesized that smaller in vivo angles (more flexed) at the knee and ankle joint would be associated with more compliant extensor muscles. We measured passive muscle tension during cyclical stretching (20%) around L0 (sarcomere lengths of 2. 2┬Ám) in fiber bundles extracted from cruralis and plantaris muscles. We found no relationship between muscle stiffness and range of motion for either muscle-joint complex. There were no differences in the passive properties of the cruralis muscle among the four species, but the plantaris muscles of the Xenopus and Kassina were significantly stiffer than those of the other two species. Our results suggest that in anurans the stiffness of muscle fibers is a relatively minor contributor to stiffness at the level of joints and that variation in other anatomical properties including muscle-tendon architecture and joint mechanics as well as active control likely contribute more significantly to range of motion during locomotion.