Stability Conditions and Mechanism of Cream Soaps: Effect of Polyols.

Journal of oleo science

PubMedID: 26179000

Sagitani H, Komoriya M. Stability Conditions and Mechanism of Cream Soaps: Effect of Polyols. J Oleo Sci. 2015;.
Fatty acids, fatty acid potassium soaps, polyols and water are essential ingredients for producing stable cream soaps. The solution behavior of the above four components system has been studied to elucidate the effect of four sorts of polyols (glycerol, 1,3-butylene glycol, polyethylene glycol 400 and dipropylene glycol) on the stability of cream soaps. It has been revealed that the lamellar liquid crystalline one-phase converted to a two-phase of a lamellar phase and an isotropic aqueous solution by the addition of a few percent of 1,3-butylene glycol, polyethylene glycol 400 and dipropylene glycol, whereas the lamellar one-phase was remained by about 50 wt% of glycerol in the aqueous solution. The X-ray data at room temperature showed that the existence of 1:1 acid soap (1:1 mole ratio of potassium soap/fatty acid) crystals in the 1,3-butylene glycol, polyethylene glycol 400 and dipropylene glycol systems, whereas that the coexistence of 1:1 acid soap crystal and a lamellar gel phase (swelled lamellar gel structure) in the glycerol system. The phase transition peaks from coagel to gel (Tgel) and from gel to liquid state (Tc) were appeared in the above four polyol systems by DSC measurements. It was confirmed from the combined data of SAXS and DSC that the existence of anhydrous 1:1 acid soap gels (or with small amount of bound water) in the all polyol systems, whereas the coexistence of the anhydrate gel and the swelled gel with a lot of intermediate water in the only glycerol system. This swelled gel structure would be contributed to stabilize the dispersed anhydrate acid soap crystals in cream soaps.