Merging multiple longitudinal studies with study-specific missing covariates: A joint estimating function approach.

Biometrics

PubMedID: 26193911

Wang F, Song PX, Wang L. Merging multiple longitudinal studies with study-specific missing covariates: A joint estimating function approach. Biometrics. 2015;.
Merging multiple datasets collected from studies with identical or similar scientific objectives is often undertaken in practice to increase statistical power. This article concerns the development of an effective statistical method that enables to merge multiple longitudinal datasets subject to various heterogeneous characteristics, such as different follow-up schedules and study-specific missing covariates (e. g. , covariates observed in some studies but missing in other studies). The presence of study-specific missing covariates presents great statistical methodology challenge in data merging and analysis. We propose a joint estimating function approach to addressing this challenge, in which a novel nonparametric estimating function constructed via splines-based sieve approximation is utilized to bridge estimating equations from studies with missing covariates to those with fully observed covariates. Under mild regularity conditions, we show that the proposed estimator is consistent and asymptotically normal. We evaluate finite-sample performances of the proposed method through simulation studies. In comparison to the conventional multiple imputation approach, our method exhibits smaller estimation bias. We provide an illustrative data analysis using longitudinal cohorts collected in Mexico City to assess the effect of lead exposures on children's somatic growth.