A real-time documentation and mechanistic investigation of quantum dots-induced autophagy in live Caenorhabditis elegans.

Biomaterials

PubMedID: 26342559

Zhou Y, Wang Q, Song B, Wu S, Su Y, Zhang H, He Y. A real-time documentation and mechanistic investigation of quantum dots-induced autophagy in live Caenorhabditis elegans. Biomaterials. 2015;7238-48.
Autophagy is a highly important intracellular process for the degradation of endogenous or foreign contents in the cytoplasm. Though nanomaterials-induced autophagy has been extensively studied, real-time information about the autophagic process induced by nanomaterials in live organisms remains unknown. Here by using Caenorhabditis elegans as the model organism and fluorescent semiconductor quantum dots (QDs) as a representative nanomaterial, we systematically investigated the phenomenon of QDs-induced autophagy in live organisms. Our results demonstrated that the internalized QDs trigger a complete autophagic process in C. elegans intestinal cells. Further investigations revealed that this QD-induced autophagy in C. elegans is neither a response to released heavy metal ions by the QDs, nor an attempt to engulf exogenous QD materials, but a defensive strategy of the organism to clear and recycle damaged endosomes. Of particular significance, for the first time, we presented real-time tracking of autophagosomes formation in live organisms, providing detailed temporal-spatial information of this process. This study may help us better understand the relationship between nanomaterials and autophagy in vivo, and provide invaluable information for safety evaluation and bio-application of nanomaterials.