Upregulation of miR-582-5p inhibits cell proliferation, cell cycle progression and invasion by targeting Rab27a in human colorectal carcinoma.

Cancer gene therapy

PubMedID: 26384136

Zhang X, Zhang Y, Yang J, Li S, Chen J. Upregulation of miR-582-5p inhibits cell proliferation, cell cycle progression and invasion by targeting Rab27a in human colorectal carcinoma. Cancer Gene Ther. 2015;.
Colorectal carcinoma (CRC) is known as the most common cancer. MicroRNAs (miRNAs) have been proven to have important roles in human carcinogenesis by regulating various target genes. Recently, the downregulation of miR-582-5p had been demonstrated in CRC. However, its function and the underlying mechanism in CRC remains unknown. In this study, we found that miR-582-5p was frequently downregulated in CRC tissues compared with corresponding noncancerous tissues, as well as in CRC cell lines. Transfection with miR-582-5p mimics significantly inhibited CRC cell proliferation, invasion and arrested cell cycle at the G1/S phase, but promoted cell apoptosis. Further analysis demonstrated that miR-582-5p attenuated the expression of RAS-related GTP-binding protein (Rab27a). Luciferase reporter assay confirmed that Rab27a was a target of miR-582-5p. Mechanism analyses revealed that Rab27a overexpression significantly attenuated the inhibitory effect of miR-582-5p on CRC cell growth, invasion and cell cycle progression. Our data suggest that miR-582-5p may function as a tumor suppressor in the development of CRC by targeting Rab27a, indicating a novel therapeutic strategy for patients with CRC.