Role of macromolecular crowding and salt ions on the structural-fluctuation of a highly compact configuration of carbonmonoxycytochrome c.

Biophysical chemistry

PubMedID: 26386654

Kumar R, Sharma D, Jain R, Kumar S, Kumar R. Role of macromolecular crowding and salt ions on the structural-fluctuation of a highly compact configuration of carbonmonoxycytochrome c. Biophys Chem. 2015;20761-73.
Carbonmonoxycytochrome c refolds to a native-like compact state (NCO-state), where the non-native Fe(2+)-CO interaction persists. Structural and molecular properties extracted from CD, fluorescence and NMR experiments reveal that the NCO-state shows the generic properties of molten globules. Slow thermal-dissociation of CO transforms the NCO-state to native-state (N-state), where the native Fe(2+)-M80 bond recovers. To determine the role of crowding agents and salt ions on the structural-fluctuation of NCO, the kinetic and thermodynamic parameters for CO-dissociation from NCO (NCO?N+CO) were measured at varying concentrations of crowding agents (dextran 70, dextran 40, ficoll 70) and salt ions (anion: ClO4(-), I(-), Br(-), NO3(-), Cl(-); cation: NH4(+), K(+), Na(+)). As [crowding agent] or [ion] is increased, the rate coefficient of CO-dissociation (kdiss) decreases exponentially. Furthermore, the extent of decrease in kdiss is found to be dependent on (i) size, charge density and charge dispersion of the ion, and (ii) size, shape, and viscosity of the crowding agent.