Time differentiated nuclear resonance spectroscopy coupled with pulsed laser heating in diamond anvil cells.

The Review of scientific instruments

PubMedID: 26628151

Kupenko I, Strohm C, McCammon C, Cerantola V, Glazyrin K, Petitgirard S, Vasiukov D, Aprilis G, Chumakov AI, Rüffer R, Dubrovinsky L. Time differentiated nuclear resonance spectroscopy coupled with pulsed laser heating in diamond anvil cells. Rev Sci Instrum. 2015;86(11):114501.
Developments in pulsed laser heating applied to nuclear resonance techniques are presented together with their applications to studies of geophysically relevant materials. Continuous laser heating in diamond anvil cells is a widely used method to generate extreme temperatures at static high pressure conditions in order to study the structure and properties of materials found in deep planetary interiors. The pulsed laser heating technique has advantages over continuous heating, including prevention of the spreading of heated sample and/or the pressure medium and, thus, a better stability of the heating process. Time differentiated data acquisition coupled with pulsed laser heating in diamond anvil cells was successfully tested at the Nuclear Resonance beamline (ID18) of the European Synchrotron Radiation Facility. We show examples applying the method to investigation of an assemblage containing e-Fe, FeO, and Fe3C using synchrotron Mössbauer source spectroscopy, FeCO3 using nuclear inelastic scattering, and Fe2O3 using nuclear forward scattering. These examples demonstrate the applicability of pulsed laser heating in diamond anvil cells to spectroscopic techniques with long data acquisition times, because it enables stable pulsed heating with data collection at specific time intervals that are synchronized with laser pulses.