Aminopeptidase N inhibitor 4cc synergizes antitumor effects of 5-fluorouracil on human liver cancer cells through ROS-dependent CD13 inhibition.

Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie

PubMedID: 26653552

Sun ZP, Zhang J, Shi LH, Zhang XR, Duan Y, Xu WF, Dai G, Wang XJ. Aminopeptidase N inhibitor 4cc synergizes antitumor effects of 5-fluorouracil on human liver cancer cells through ROS-dependent CD13 inhibition. Biomed Pharmacother. 2015;7665-72.
Aminopeptidase N (APN, also known as CD13) is involved in cellular processes of various types of tumors and a potential anti-cancer therapeutic target. Here, we report the effect of an APN inhibitor 4cc in enhancing sensitivity of hepatocellular carcinoma (HCC) cell lines and xenograft model in response to 5-fluorouracil (5-FU) in vivo and in vitro. The treatment of the combination of 4cc with 5-FU, compared to the combination of bestain with 5-FU, markedly suppressed cell growth and induced apoptosis of HCC cells, accompanying the increase in the level of reactive oxygen species (ROS) and followed by a decrease in the mitochondrial membrane potential (??M). Furthermore, the combination of 4cc and 5-FU showed a significant inhibitory effect on the growth of HCC xenograft tumors. In addition, following the treatment of 4cc, APN activity and clonogenic formation and the number of CD13-positive cells in PLC/PRF/5 cells were significantly decreased, suggesting that 4cc may also inhibit liver cancer stem cells by CD13 inhibition. These results showed that the APN inhibitor 4cc synergizes antitumor effects of 5-FU on human liver cancer cells via ROS-mediated drug resistance inhibition and concurrent activation of the mitochondrial pathways of apoptosis.