Changes in differential gene expression during a fatal stroke.

Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia

PubMedID: 27088144

Stone SF, Armstrong C, van Eeden PE, Arendts G, Hankey GJ, Brown SG, Fatovich DM. Changes in differential gene expression during a fatal stroke. J Clin Neurosci. 2016;23130-4.
We present a young woman (with an identical twin sister) who arrived at the Emergency Department (ED) within 1 hour of her initial stroke symptoms. Previous microarray studies have demonstrated differential expression of multiple genes between stroke patients and healthy controls. However, for many of these studies there is a significant delay between the initial symptoms and collection of blood samples, potentially leaving the important early activators/regulators of the inflammatory response unrecognised. Blood samples were collected from the patient for an analysis of differential gene expression over time during the evolution of a fatal stroke. The time points for blood collection were ED arrival (T0) and 1, 3 and 24 hours post ED arrival (T1, T3 and T24). This was compared to her identical twin and an additional two age and sex-matched healthy controls. When compared to the controls, the patient had 12 mRNA that were significantly upregulated at T0, and no downregulated mRNA (with a cut off fold change value ±1. 5). Of the 12 upregulated mRNA at T0, granzyme B demonstrated the most marked upregulation on arrival, with expression steadily declining over time, whereas S100 calcium-binding protein A12 (S100A12) gene expression increased from T0 to T24, remaining >two-fold above that in the healthy controls at T24. Other genes, such as matrix metalloproteinase 9, high mobility group box 2 and interleukin-18 receptor I were not upregulated at T0, but they demonstrated clear upregulation from T1–T3, with gene expression declining by T24. A greater understanding of the underlying immunopathological mechanisms that are involved during the evolution of ischaemic stroke may help to distinguish between patients with stroke and stroke mimics.