Towards real-time topical detection and characterization of FDG dose infiltration prior to PET imaging.

European journal of nuclear medicine and molecular imaging

PubMedID: 27557845

Williams JM, Arlinghaus LR, Rani SD, Shone MD, Abramson VG, Pendyala P, Chakravarthy AB, Gorge WJ, Knowland JG, Lattanze RK, Perrin SR, Scarantino CW, Townsend DW, Abramson RG, Yankeelov TE. Towards real-time topical detection and characterization of FDG dose infiltration prior to PET imaging. Eur J Nucl Med Mol Imaging. 2016;.
To dynamically detect and characterize (18)F-fluorodeoxyglucose (FDG) dose infiltrations and evaluate their effects on positron emission tomography (PET) standardized uptake values (SUV) at the injection site and in control tissue.

Investigational gamma scintillation sensors were topically applied to patients with locally advanced breast cancer scheduled to undergo limited whole-body FDG-PET as part of an ongoing clinical study. Relative to the affected breast, sensors were placed on the contralateral injection arm and ipsilateral control arm during the resting uptake phase prior to each patient's PET scan. Time-activity curves (TACs) from the sensors were integrated at varying intervals (0-10, 0-20, 0-30, 0-40, and 30-40 min) post-FDG and the resulting areas under the curve (AUCs) were compared to SUVs obtained from PET.

In cases of infiltration, observed in three sensor recordings (30 %), the injection arm TAC shape varied depending on the extent and severity of infiltration. In two of these cases, TAC characteristics suggested the infiltration was partially resolving prior to image acquisition, although it was still apparent on subsequent PET. Areas under the TAC 0-10 and 0-20 min post-FDG were significantly different in infiltrated versus non-infiltrated cases (Mann-Whitney, p?
Topical sensors applied near the injection site provide dynamic information from the time of FDG administration through the uptake period and may be useful in detecting infiltrations regardless of PET image field of view. This dynamic information may also complement the static PET image to better characterize the true extent of infiltrations.