Antitumor activity evaluation of meso-tetra (pyrrolidine substituted) pentylporphin-mediated photodynamic therapy in vitro and in vivo.

Journal of photochemistry and photobiology. B, Biology

PubMedID: 27591565

Zhang LJ, Zhang XH, Liao PY, Sun JJ, Wang L, Yan YJ, Chen ZL. Antitumor activity evaluation of meso-tetra (pyrrolidine substituted) pentylporphin-mediated photodynamic therapy in vitro and in vivo. J Photochem Photobiol B, Biol. 2016;163224-231.
Photodynamic therapy is a minimally invasive and promising new method in cancer treatment and has attracted considerable attention in recent years. An ideal photosensitizer is a crucial element to photodynamic therapy. In the present paper, a novel porphyrin derivative, 5, 10, 15, 20-tetrakis (5-(pyrrolidin-1-yl) pentyl) porphin (TPPP) was synthesized. Its spectroscopic and physicochemical properties, therapeutic efficacy as a photosensitizer in photodynamic therapy for human bladder cancer in vitro and in vivo were investigated. TPPP had strong absorption at 648nm (e=1. 75×10(4)M(-1)cm(-1)), and two fluorescence emission peaks at 652nm and 718nm. PDT with TPPP showed low dark toxicity and high phototoxicity to human bladder cancer T24 cells in vitro. In bearing T24 tumor nude mice, the growth of tumor was significantly inhibited by combining use of 5mg/kg TPPP with 100J/cm(2) (650nm, 180mW/cm(2)) laser irradiation at 3h following injection of TPPP. The antitumor effect was also confirmed with histopathological assay. The histopathological study results revealed that PDT using TPPP and 100J/cm(2) (650nm, 180mW/cm(2)) laser irradiation induced tumor cells shrunken and necrotic. These results indicate that TPPP is useful as a new photosensitizer in PDT for cancer, and deserves further investigation.