Effects of the Administration of 25(OH) Vitamin D3 in an Experimental Model of Chronic Kidney Disease in Animals Null for 1-Alpha-Hydroxylase.

PloS one

PubMedID: 28107527

Torremadé N, Bozic M, Goltzman D, Fernandez E, Valdivielso JM. Effects of the Administration of 25(OH) Vitamin D3 in an Experimental Model of Chronic Kidney Disease in Animals Null for 1-Alpha-Hydroxylase. PLoS ONE. 2017;12(1):e0170654.
The final step in vitamin D activation is catalyzed by 1-alpha-hydroxylase (CYP27B1). Chronic kidney disease (CKD) is characterized by low levels of both 25(OH)D3 and 1,25(OH)2D3 provoking secondary hyperparathyroidism (2HPT). Therefore, treatments with active or native vitamin D compounds are common in CKD to restore 25(OH)D3 levels and also to decrease PTH. This study evaluates the dose of 25(OH)D3 that restores parathyroid hormone (PTH) and calcium levels in a model of CKD in CYP27B1-/- mice. Furthermore, we compare the safety and efficacy of the same dose in CYP27B1+/+ animals. The dose needed to decrease PTH levels in CYP27B1-/- mice with CKD was 50 ng/g. That dose restored blood calcium levels without modifying phosphate levels, and increased the expression of genes responsible for calcium absorption (TRPV5 and calbindinD- 28K in the kidney, TRPV6 and calbindinD-9k in the intestine). The same dose of 25(OH)D3 did not modify PTH in CYP27B1+/+ animals with CKD. Blood calcium remained normal, while phosphate increased significantly. Blood levels of 25(OH)D3 in CYP27B1-/- mice were extremely high compared to those in CYP27B1+/+ animals. CYP27B1+/+ animals with CKD showed increases in TRPV5, TRPV6, calbindinD-28K and calbindinD-9K, which were not further elevated with the treatment. Furthermore, CYP27B1+/+ animals displayed an increase in vascular calcification. We conclude that the dose of 25(OH)D3 effective in decreasing PTH levels in CYP27B1-/- mice with CKD, has a potentially toxic effect in CYP27B1+/+ animals with CKD.