Expression of Hsp27 correlated with rat detrusor contraction after acute urinary retention.

Molecular and cellular biochemistry

PubMedID: 23740515

Xiong Z, Wang Y, Gong W, Zhou Z, Lu G. Expression of Hsp27 correlated with rat detrusor contraction after acute urinary retention. Mol Cell Biochem. 2013;381(1-2):257-65.
Heat shock protein 27 (Hsp27) can regulate actin cytoskeleton dynamics and contractile protein activation. This study investigates whether Hsp27 expression is related to bladder contractile dysfunction after acute urinary retention (AUR). Female rats were randomized either to AUR by urethral ligation or to normal control group. Bladder and smooth muscle strip contraction at time points from 0 h to 7 days after AUR were estimated by cystometric and organ bath studies. Hsp27 expression in bladder tissue at each time point was detected with immunofluorescence, Western blots, and real-time PCR. Expression of the three phosphorylated forms of Hsp27 was detected by Western blots. Smooth muscle ultrastructure was observed by transmission electron microscopy. Data suggest that maximum detrusor pressure and both carbachol-induced and spontaneous detrusor strip contraction amplitude decreased gradually for the duration from 0 to 6 h, and then increased gradually to near-normal values at 24 h. Treatment of muscle strips with the p38MAK inhibitor, SB203580, inhibited carbachol-induced contractions. Smooth muscle ultrastructure damage was the highest at 6 h after AUR, and then lessened gradually during next 7 days, and ultrastructure was close to normal. Expressions of Hsp27 mRNA and protein and the proteins of the three phosphorylated forms were higher at 0 h, decreased to lower levels up to 6 h, and then gradually increased. Therefore, we conclude that rat bladder contractile function after AUR worsens during 0-6 h, and then gradually recovers. The findings of the current study suggest that Hsp27 modulates bladder smooth muscle contraction after AUR, and that phosphorylation of Hsp27 may be an important pathway modulating actin cytoskeleton dynamics in bladder smooth muscle contraction and reconstruction after injury.