Melatonin synthesis in human colostrum mononuclear cells enhances dectin-1-mediated phagocytosis by mononuclear cells.

Journal of pineal research

PubMedID: 23745599

Pires-Lapa MA, Tamura EK, Salustiano EM, Markus RP. Melatonin synthesis in human colostrum mononuclear cells enhances dectin-1-mediated phagocytosis by mononuclear cells. J Pineal Res. 2013;55(3):240-6.
Many cells in the organism besides pinealocytes, synthesize melatonin. Here, we evaluate both the mechanism of zymosan-induced melatonin synthesis and its autocrine effect in human colostral mononuclear cells. The synthesis of melatonin was induced by activation of the transcription factor nuclear factor kappa B (NF-?B), as either the blockade of the proteasome or the binding of NF-?B to DNA inhibits zymosan-induced melatonin synthesis. As observed in RAW 264.7 lineage cells, the dimer involved is RelA/c-Rel. Melatonin plays a direct role in mononuclear cell activity, increasing zymosan-induced phagocytosis by stimulating MT2 melatonin receptors and increasing the expression of dectin-1. This role was confirmed by the blockade of melatonin receptors using the competitive antagonist luzindole and the MT2 -selective partial agonist 4P-PDOT. In summary, we show that melatonin produced by immune-competent cells acts in an autocrine manner, enhancing the clearance of pathogens by increasing phagocyte efficiency. Given that these cells are present in human colostrum for 4 or 5 days after birth, this mechanism may be relevant for the protection of infant health.