Influence of the lactose grade within dry powder formulations of fluticasone propionate and terbutaline sulphate.

International journal of pharmaceutics

PubMedID: 22036653

Le VN, Bierend H, ROBINS E, Steckel H, Flament MP. Influence of the lactose grade within dry powder formulations of fluticasone propionate and terbutaline sulphate. Int J Pharm. 2012;422(1-2):75-82.
Dry powder formulations are often composed of fine drug particles and coarser carrier particles, typically alpha-lactose monohydrate. However, the performance of a powder formulation may be highly dependent on the lactose quality and source. This study investigated the characteristics of lactose that influence the drug-to-carrier interaction and the performance of lactose-based dry powder inhaler formulations. The selected lactoses differed in the preparation processes and the content of fine lactose particles. Efficiency testing was done using fluticasone propionate and terbutaline sulphate as model drugs. Inverse gas chromatography was used to determine the surface heterogeneity distribution of different energy sites of the lactose and to understand the mechanism by which the fine carrier particles can improve the performance of dry powder inhalers. To assess the adhesion of respirable-sized drug to carrier particles, a simple method was developed based on aspiration and considering the whole blend as it is used in dry powder inhalers. When the percentage of fine lactose is high, a lower quantity of drug adheres to the lactose and/or the adhesion force is also lower. This was confirmed by the aerosolization assays done in the TSI (twin stage impinger). A correlation was observed between adhesion characteristics and inertial impaction. For both drugs, the fine particle fractions were highest in blends that present a greater proportion of lactose fine particles. A fairly good correlation between the fine particle fractions of both drugs and the peak max value and the AUC (area under curve) were found by inverse gas chromatography. With higher fine particle fraction values, which correspond to higher content of fines, the peak maxima determined by inverse gas chromatography were shifted to higher adsorption potentials, which supports the agglomeration hypothesis.