Recent performance improvements to the DFT and TDDFT in GAMESS.

Journal of computational chemistry

PubMedID: 22241553

Lasinski ME, Romero NA, Brown ST, Blaudeau JP. Recent performance improvements to the DFT and TDDFT in GAMESS. J Comput Chem. 2012;33(7):723-31.
The general atomic and molecular electronic structure system (GAMESS) is a quantum chemistry package used in the first-principles modeling of complex molecular systems using density functional theory (DFT) as well as a number of other post-Hartree-Fock methods. Both DFT and time-dependent DFT (TDDFT) are of particular interest to the materials modeling community. Millions of CPU hours per year are expended by GAMESS calculations on high-performance computing systems; any substantial reduction in the time-to-solution for these calculations represents a significant saving in CPU hours. As part of this work, three areas for improvement were identified: (1) the exchange-correlation (XC) integration grid, (2) profiling and optimization of the DFT code, and (3) TDDFT parallelization. We summarize the work performed in these task areas and present the resulting performance improvement. These software enhancements are available in 12JAN2009R3 or later versions of GAMESS.