Diversity of a mesophilic lignocellulolytic microbial consortium which is useful for enhancement of biogas production.

Bioresource technology

PubMedID: 22365718

Yan L, Gao Y, Wang Y, Liu Q, Sun Z, Fu B, Wen X, Cui Z, Wang W. Diversity of a mesophilic lignocellulolytic microbial consortium which is useful for enhancement of biogas production. Bioresour Technol. 2012;11149-54.
A mesophilic lignocellulolytic microbial consortium BYND-5, established by successive subcultivation, was applied to enhance the biogas production. The degradation efficiency of BYND-5 for rice straw was more than 49.0 ± 1.8% after 7 days of cultivation at 30°C. Various organic compounds, including acetic acid, propionic acid, butyric acid and glycerin were detected during biodegradation. The diversity analysis of BYND-5 was conducted by ARDRA (Amplified ribosomal DNA restriction analysis) of the 16S rDNA clone library. Results indicated that bacterial groups represented in the clone library were the Firmicutes (5.96%), the Bacteroidetes (40.0%), Deferribacteres (8.94%), Proteobacteria (16.17%), Lentisphaerae (2.13%), Fibrobacteraceae (1.7%), and uncultured bacterium (25.1%). Additionally, the enhancement of biogas yield and methane content was directly related to the pretreatment with BYND-5. The microbial community identified herein is potential candidate consortium for the degradation of waste lignocellulose and enhancement of biogas production under the mesophilic temperature conditions.