Nature's "silver bullet" for anticoagulation: mechanism of Zymogen Protein C to Activated Protein C.

Advances in experimental medicine and biology

PubMedID: 22879009

Bruley DF, Streiff MB. Nature's "silver bullet" for anticoagulation: mechanism of Zymogen Protein C to Activated Protein C. Adv Exp Med Biol. 2013;76515-21.
We have defined the Zymogen Protein C (ZPC) to Activated Protein C (APC) process as the "silver bullet" of blood anticoagulation. This definition suggests that the anticoagulation activity occurs when and where it is needed, resulting in local anticoagulation without enhanced bleeding. It is important for man to be able to manufacture an inexpensive ZPC product or to find a substitute drug to duplicate one of God's natural anticoagulant/antithrombotic processes, in vivo, in human blood. After intense research and at great expense scientists have not been able to produce a safe anticoagulant. All products that are now being used can cause bleeding even if dosing is carefully monitored. In fact many professionals in the health care and the pharmaceutical industries define an anticoagulant as a drug that "does" cause bleeding. This results in a large financial burden that has been placed on the health care industry because of necessary emergency treatments for dangerous occurrences. In addition, many patients are dying annually due to internal and external bleeds created or enhanced by presently administered anticoagulants. Since there are no safe drugs available it is necessary to use the existing products when a medical condition calls for an anticoagulant. This paper will discuss the ZPC process and why its mechanistic design is one of nature's unique defenses against unwanted blood clotting. The prevention and lysis of clots allows normal blood flow and therefore results in the required tissue oxygenation for cell function and survival. If clinical research is carried out with great care it could uncover other uses of ZPC that will allow safer medical procedures, in addition to its use with standard PC deficiency cases. An important example might be for some brain surgeries where the use of existing anticoagulants is unsafe because of potential bleeds. Clinical research could reveal an efficacious ZPC level (for instance, 125, 150, or 200% of normal) that would prevent dangerous clotting situations from occurring without unnecessary bleeding.