Cryptic genetic diversity within the Anopheles nili group of malaria vectors in the equatorial forest area of Cameroon (Central Africa).

PloS one

PubMedID: 23516565

Ndo C, Simard F, Kengne P, Awono-Ambene P, Morlais I, Sharakhov I, Fontenille D, Antonio-Nkondjio C. Cryptic genetic diversity within the Anopheles nili group of malaria vectors in the equatorial forest area of Cameroon (Central Africa). PLoS ONE. 2013;8(3):e58862.
BACKGROUND
The Anopheles nili group of mosquitoes includes important vectors of human malaria in equatorial forest and humid savannah regions of sub-Saharan Africa. However, it remains largely understudied, and data on its populations' bionomics and genetic structure are crucially lacking. Here, we used a combination of nuclear (i.e. microsatellite and ribosomal DNA) and mitochondrial DNA markers to explore and compare the level of genetic polymorphism and divergence among populations and species of the group in the savannah and forested areas of Cameroon, Central Africa.

PRINCIPAL FINDINGS
All the markers provided support for the current classification within the An. nili group. However, they revealed high genetic heterogeneity within An. nili s.s. in deep equatorial forest environment. Nuclear markers showed the species to be composed of five highly divergent genetic lineages that differed by 1.8 to 12.9% of their Internal Transcribed Spacer 2 (ITS2) sequences, implying approximate divergence time of 0.82 to 5.86 million years. However, mitochondrial data only detected three major subdivisions, suggesting different evolutionary histories of the markers.

CONCLUSIONS/SIGNIFICANCE
This study enlightened additional cryptic genetic diversity within An. nili s.s. in the deep equatorial forest environment of South Cameroon, reflecting a complex demographic history for this major vector of malaria in this environment. These preliminary results should be complemented by further studies which will shed light on the distribution, epidemiological importance and evolutionary history of this species group in the African rainforest, providing opportunities for in-depth comparative studies of local adaptation and speciation in major African malaria vectors.