Effects of varying combinations of intraduodenal lipid and carbohydrate on antropyloroduodenal motility, hormone release, and appetite in healthy males.

American journal of physiology. Regulatory, integrative and comparative physiology

PubMedID: 19211720

Seimon RV, Feltrin KL, Meyer JH, Brennan IM, Wishart JM, Horowitz M, Feinle-Bisset C. Effects of varying combinations of intraduodenal lipid and carbohydrate on antropyloroduodenal motility, hormone release, and appetite in healthy males. Am J Physiol Regul Integr Comp Physiol. 2009;296(4):R912-20.
Intraduodenal infusions of both lipid and glucose modulate antropyloroduodenal motility and stimulate plasma CCK, with lipid being more potent than glucose. Both stimulate glucagon-like peptide-1, but only lipid stimulates peptide YY (PYY), while only glucose raises blood glucose and stimulates insulin. When administered in combination, lipid and carbohydrate may, thus, have additive effects on energy intake. However, elevated blood glucose levels do not suppress energy intake, and the effect of insulin is controversial. We hypothesized that increasing the ratio of maltodextrin, a complex carbohydrate, relative to lipid would be associated with a reduction in effects on antropyloroduodenal pressures, gut hormones, appetite, and energy intake, when compared with lipid alone. Ten healthy males were studied on three occasions in double-blind, randomized order. Antropyloroduodenal pressures, plasma CCK, PYY and insulin, blood glucose, and appetite were measured during 90-min intraduodenal infusions of 1) 3 kcal/min lipid (L3), 2) 2 kcal/min lipid and 1 kcal/min maltodextrin (L2/CHO1), or 3) 1 kcal/min lipid and 2 kcal/min maltodextrin (L1/CHO2). Energy intake at a buffet lunch consumed immediately after the infusion was quantified. Reducing the lipid (thus, increasing the carbohydrate) content of the infusion was associated with reduced stimulation of basal pyloric pressures (r = 0.76, P < 0.01), plasma CCK (r = 0.66, P < 0.01), and PYY (r = 0.98, P < 0.001), and reduced suppression of antral (r = -0.64, P < 0.05) and duodenal (r = -0.69, P < 0.05) pressure waves, desire-to-eat (r = -0.8, P < 0.001), and energy intake (r = 0.74, P < 0.01), with no differences in phasic (isolated) pyloric pressures. In conclusion, in healthy males, intraduodenal lipid is a more potent modulator of gut function, associated with greater suppression of energy intake, when compared with isocaloric combinations of lipid and maltodextrin.