Selenium dietary supplementation as a mechanism to restore hepatic selenoprotein regulation in rat pups exposed to alcohol.

Alcohol (Fayetteville, N.Y.)

PubMedID: 24113570

Jotty K, Ojeda ML, Nogales F, Murillo ML, Carreras O. Selenium dietary supplementation as a mechanism to restore hepatic selenoprotein regulation in rat pups exposed to alcohol. Alcohol. 2013;.
Ethanol exposure during gestation and lactation decreases selenium (Se) intake, disrupting body Se balance and inducing oxidative stress in rat offspring. Selenium-supplemented diet (0.5 ppm) was administered to ethanol-exposed (20% v/v) dams during gestation and lactation. When the dams' pups were 21 days old, the pups' levels of the main hepatic selenoproteins glutathione peroxidase (GPx1 and GPx4) and selenoprotein P (SelP) were measured. The pups were divided into control (C), alcohol (A), control-selenium (CS), and alcohol-selenium (AS) groups. The purpose was to evaluate the effect of the selenium-supplemented diet on the levels of Se deposits present in the livers of their pups. Alcohol decreases hepatic Se deposits, GPx activity, and GPx1 expression; alcohol increases GPx4 and SelP expression. Se was measured by furnace graphite atomic absorption spectrometry, the antioxidant activity of GPx and concentration of hepatic phospholipids (PL) were determined by spectrophotometry, and the selenoprotein expressions were detected by Western blotting. Selenite treatment prevented alcohol's effects of diminishing the Se deposits, GPx activity, and GPx1 expression, while maintaining the high levels of the expression of GPx4 and SelP. These results suggest that depletion of hepatic Se levels in rat pups, caused by ethanol exposure to their dams, affects the synthesis of the 3 main hepatic selenoproteins in different ways, which is related to a decrease in GPx activity and PL concentration, and an increase in serum Se levels. Selenium supplementation to the dams increased the expression of GPx1, GPx4, and SelP in their pups.