Steroid use and human performance: Lessons for integrative biologists.

Integrative and comparative biology

PubMedID: 21665826

Husak JF, Irschick DJ. Steroid use and human performance: Lessons for integrative biologists. Integr Comp Biol. 2009;49(4):354-64.
While recent studies have begun to address how hormones mediate whole-animal performance traits, the field conspicuously lags behind research conducted on humans. Recent studies of human steroid use have revealed that steroid use increases muscle cross-sectional area and mass, largely due to increases in protein synthesis, and muscle fiber hypertrophy attributable to an increased number of satellite cells and myonuclei per unit area. These biochemical and cellular effects on skeletal muscle morphology translate into increased power and work during weight-lifting and enhanced performance in burst, sprinting activities. However, there are no unequivocal data that human steroid use enhances endurance performance or muscle fatigability or recovery. The effects of steroids on human morphology and performance are in general consistent with results found for nonhuman animals, though there are notable discrepancies. However, some of the discrepancies may be due to a paucity of comparative data on how testosterone affects muscle physiology and subsequent performance across different regions of the body and across vertebrate taxa. Therefore, we advocate more research on the basic relationships among hormones, morphology, and performance. Based on results from human studies, we recommend that integrative biologists interested in studying hormone regulation of performance should take into account training, timing of administration, and dosage administered when designing experiments or field studies. We also argue that more information is needed on the long-term effects of hormone manipulation on performance and fitness.