The energy cost for balance control during upright standing.

Gait & posture

PubMedID: 19525114

Houdijk H, Fickert R, van Velzen J, van Bennekom C. The energy cost for balance control during upright standing. Gait Posture. 2009;30(2):150-4.
The aim of this study was to investigate whether balance control during a static upright standing task with and without balance perturbations elicits a significant and meaningful metabolic energy demand and to test whether this energy demand correlates with conventional posturography measures for balance control. Ten healthy subjects were assessed in four 4-min upright standing conditions on a force platform while energy consumption was measured using open circuit respirometry. In the reference condition subjects stood upright in parallel stance without balance perturbation (PS). In the other conditions balance was perturbed by placing the subjects in tandem stance (TS), in tandem stance blind folded (TSBF) and in tandem stance on a balance board (TSBB). Gross and net energy consumption was assessed and various conventional posturography measures were derived from the excursion of the center of pressure (CoP) of the ground reaction force. Energy consumption was substantially affected by all balance perturbations, compared to the reference condition. The highest increase in energy consumption was found for the TSBF condition (increase of 0.86 J kg(-1)s(-1) or 60% of PS). Significant correlations were found between energy consumption and posturography measures. The strongest correlation was found between gross energy consumption and the CoP path and normalized CoP path along the anterior-posterior axis (resp. r=0.57 and r=0.66, p<0.001). It was concluded that the effort for balance control can elicit a meaningful metabolic energy demand. Conventional posturography provided significant, though moderate, predictors of this metabolic effort for balance control.