New triazoles and echinocandins: mode of action, in vitro activity and mechanisms of resistance.

Expert review of anti-infective therapy

PubMedID: 19803707

Fera MT, La Camera E, De Sarro A. New triazoles and echinocandins: mode of action, in vitro activity and mechanisms of resistance. Expert Rev Anti Infect Ther. 2009;7(8):981-98.
Different types of mycoses, especially invasive mycoses caused by yeasts and molds, are a growing problem in healthcare. The most notable explanation for this increase is a rise in the number of immunocompromised patients owing to advances in transplantation, the emergence of AIDS and a rise in the number of invasive surgical procedures. Despite advances in medical practice, some therapeutic problems remain. In addition, intrinsic or acquired antifungal resistance may pose a serious problem to antifungal therapy. A new generation of triazole agents (voriconazole, posaconazole, isavuconazole, ravuconazole and albaconazole) and the recent class of the echinocandins (caspofungin, micafungin and anidulafungin) have become available, and represent an alternative to conventional antifungals for serious fungal infection management. Currently, only two of the recent triazole generation (voriconazole and posaconazole) and all three echinocandins are available for clinical use. More precisely, voriconazole and posaconazole are indicated for the treatment of invasive fungal infections and the echinocandins for the treatment of specific candidiasis. Voriconazole and posaconazole have a very broad spectrum of antifungal activity that includes Candida species, and filamentous and dimorphic fungi. Their activity extends to both fluconazole- and itraconazole-resistant strains of Candida. A major difference between posaconazole and voriconazole is that posaconazole has activity against Zygomycetes including Mucor spp., Rhizopus spp. and Cunninghamella spp., and voriconazole has no activity against this class of fungi. Ravuconazole, isavuconazole and albaconazole have shown very potent in vitro activity against species of Candida, Cryptococcus and Aspergillus, and they are currently in various stages of development. All three echinocandin agents, caspofungin, micafungin and anidulafungin, are similar in their spectrum of activity. Echinocandins do not possess in vitro activity against important basidiomycetes, including Cryptococcus, Rhodotorula and Trichosporon. This review attempts to deliver the most up-to-date knowledge on the mode of action and mechanisms of resistance to triazoles and echinocandins in fungal pathogens. In addition, the in vitro activity data available on triazoles and echinocandins are reported.