Bioconversion of methanol to formaldehyde. II. By purified methanol oxidase from modified yeast, Hansenula polymorpha.

Preparative biochemistry & biotechnology

PubMedID: 16971303

Sagiroglu A, Altay V. Bioconversion of methanol to formaldehyde. II. By purified methanol oxidase from modified yeast, Hansenula polymorpha. Prep Biochem Biotechnol. 2006;36(4):321-32.
Modified methylotrophic yeast Hansenula polymorpha (HP A16) that was obtained by repressing leucine oxotrophic yeast; a wild type of Hansenula polymorpha CB4732 was used in this study. The yeast is grown with methanol, which is used as a sole carbon source, using various methanol concentrations and temperatures, and methanol oxidase (MOX) which is a key enzyme of methanol metabolism; production is maximized. Whole yeast cells were cultivated under optimized inoculation conditions; they were separated into two portions. One portion of these cells was directly used in bioconversion of methanol to formaldehyde. The second portion of the free cells was broken into pieces and a crude enzyme extract was obtained. The MOX enzyme in this extract was purified via salt precipitation, dialysis, and chromatographic methods. The purified MOX enzyme of yeast (HP A16) oxidized the methanol to formaldehyde. Optimization of bioconversion conditions was studied to reach maximum activity of enzyme. The optimum temperature and pH were found to be 35 degrees C and pH 8.0 in boric acid/NaOH buffer, and it was stable over the pH range of 6-9, at the 20 degrees C 15 min. A suitable reaction period was found as 50 min. The enzyme indicated low carbon primary alcohols (C2 to C4), as well as methanol. Initially, MOX activity increased with the increase of methanol concentration, but enzyme activity decreased. The apparent Km and Vmax values for methanol substrate of HP A16 MOX were 0.25 mM and 30 U/mg, respectively. The purified MOX enzyme was applied onto sodium dodecyl sulphate-polyacrylamide gel electrophoresis; molecular weight of the enzyme was calculated to be about 670 kDa. Each MOX enzyme is composed of eight identical subunits, each of whose molecular weight is around 82 kDa and which contain eight moles of FAD as the prosthetic group, and the pI of the natural enzyme is found to be 6.4. The purified MOX enzyme was used in the bioconversion of methanol to formaldehyde as a catalyst; this conversion was compared to the conversion percentages of whole cells in our previous article in terms of catalytic performances.