Ab initio study of basal slip in Nb(2)AlC.

Journal of physics. Condensed matter : an Institute of Physics journal

PubMedID: 21690790

Music D, Sun Z, Voevodin AA, Schneider JM. Ab initio study of basal slip in Nb(2)AlC. J Phys Condens Matter. 2006;18(17):4389-95.
Using ab initio calculations, we have studied shearing in Nb(2)AlC, where NbC and Al layers are interleaved. The stress-strain analysis of this deformation mode reveals Nb-Al bond breaking, while the Nb-C bond length decreases by 4.1%. Furthermore, there is no evidence for phase transformation during deformation. This is consistent with basal slip and may be understood on the basis of the electronic structure: bands below the Fermi level are responsible for the dd bonding between NbC basal planes and only a single band with a weak dd interaction is not resistant to shearing, while all other bands are unaffected. The Al-Nb bonding character can be described as mainly metallic with weak covalent-ionic contributions. Our study demonstrates that Al layers move with relative ease under shear strain. Phase conservation upon shearing is unusual for carbides and may be due to the layered nature of the phase studied. Here, we describe the electronic origin of basal slip in Nb(2)AlC, the atomic mechanism which enables reversible plasticity in this class of materials.