Analysis of brain adrenergic receptors in dopamine-beta-hydroxylase knockout mice.

Brain research

PubMedID: 16854392

Sanders JD, Szot P, Weinshenker D, Happe HK, Bylund DB, Murrin LC. Analysis of brain adrenergic receptors in dopamine-beta-hydroxylase knockout mice. Brain Res. 2006;1109(1):45-53.
The biosynthesis of norepinephrine occurs through a multi-enzymatic pathway that includes the enzyme dopamine-beta-hydroxylase (DBH). Mice with a homozygous deletion of DBH (Dbh-/-) have a selective and complete absence of norepinephrine. The purpose of this study was to assess the expression of alpha-1, alpha-2 and beta adrenergic receptors (alpha1-AR, alpha2-AR and beta-AR) in the postnatal absence of norepinephrine by comparing noradrenergic receptors in Dbh-/- mice with those in Dbh heterozygotes (Dbh+/-), which have normal levels of norepinephrine throughout life. The densities of alpha1-AR, alpha2-AR and beta-AR were assayed with [3H]prazosin, [3H]RX21002 and [125I]-iodo-pindolol autoradiography, respectively. The alpha2-AR agonist high affinity state was examined with [125I]-para-iodoclonidine autoradiography and alpha2-AR functionality by alpha2-AR agonist-stimulated [35S]GTPgammaS autoradiography. The density of alpha1-AR in Dbh-/- mice was similar to Dbh+/- mice in most brain regions, with an up-regulation in the hippocampus. Modest decreases in alpha2-AR were found in septum, hippocampus and amygdala, but these were not reflected in alpha2-AR functionality. The density of beta-AR was up-regulated to varying degrees in many brain regions of Dbh-/- mice compared to the heterozygotes. These findings indicate that regulation of noradrenergic receptors by endogenous norepinephrine depends on receptor type and neuroanatomical region.