Dynamics of the 193 nm photodissociation of dichlorocarbene.

The Journal of chemical physics

PubMedID: 17029470

Shin SK, Dagdigian PJ. Dynamics of the 193 nm photodissociation of dichlorocarbene. J Chem Phys. 2006;125(13):133317.
The dynamics of the 193 nm photodissociation of the CCl2 molecule have been investigated in a molecular beam experiment. The CCl2 parent molecule was generated in a molecular beam by pyrolysis of CHCl3, and both CCl2 and the CCl photofragment were detected by laser fluorescence excitation. The 193 nm attenuation cross section was estimated from the reduction of the CCl2 signal as a function of the photolysis laser fluence. The internal state distribution of the CCl photofragment was derived from analysis of laser fluorescence excitation spectra in the A 2Delta-X 2Pi band system. Most of the energy available to the CCl(X 2Pi)+Cl fragments appears as translational energy. The CCl fragment rotational energy is much less than predicted in an impulsive model. The excited electronic state appears to dissociate indirectly, through coupling with a repulsive state arising from the ground-state CCl(X 2Pi)+Cl asymptote. The identity of the initially excited electronic state is discussed on the basis of what is known about the CCl2 electronic states.