Hippocampus and remote spatial memory in rats.

Hippocampus

PubMedID: 15523608

Clark RE, Broadbent NJ, Squire LR. Hippocampus and remote spatial memory in rats. Hippocampus. 2005;15(2):260-72.
Damage to the hippocampus typically produces temporally graded retrograde amnesia, whereby memories acquired recently are impaired more than memories acquired remotely. This phenomenon has been demonstrated repeatedly in a variety of species and tasks. It has also figured prominently in theoretical treatments of memory and hippocampal function. Yet temporally graded retrograde amnesia has not been demonstrated following hippocampal damage in spatial tasks like the water maze. We have assessed recent and remote spatial memory following hippocampal lesions in three different tests of spatial memory: (1) the standard water maze; (2) the Oasis maze, a dry-land version of the water maze; and (3) the annular water maze, where training and testing occur within a circular corridor. Training protocols were developed for each task such that retention of spatial memory could be expressed after very long retention intervals. In addition, retention in each task was assessed with single probe trials so that the assessment of remote memory did not depend on the ability to relearn across multiple trials. The findings were consistent across the three tasks. In the standard water maze (Experiment 1), spatial memory was impaired after training-surgery intervals of 1 day, 8 weeks, or 14 weeks. Similarly, in the Oasis maze (Experiment 2), spatial memory was impaired after training-surgery intervals of 1 day and 9 weeks. Finally, in the annular water maze (Experiment 3), spatial memory was impaired after training-surgery intervals of 9 weeks and 14 weeks. Dorsal hippocampal lesions impaired performance to the same extent as complete lesions. The impairment in remote spatial memory could reflect disruption of previously acquired spatial information. Alternatively, it is possible that in these tasks hippocampal lesions might produce an impairment in performance that prevents the expression of an otherwise intact spatial memory.