Structural and functional implications of an unusual foraminiferal beta-tubulin.

Molecular biology and evolution

PubMedID: 15944439

Habura A, Wegener L, Travis JL, Bowser SS. Structural and functional implications of an unusual foraminiferal beta-tubulin. Mol Biol Evol. 2005;22(10):2000-9.
We have obtained sequence data for beta-tubulin genes from eight species of Foraminifera (forams) and alpha-tubulin sequences from four species, sampling major taxonomic groups from a wide range of environments. Analysis of the beta-tubulin sequences demonstrates that foram beta-tubulins possess the highest degree of divergence of any tubulin gene sequenced to date and represent a novel form of the protein. In contrast, foram alpha-tubulin genes resemble the conventional alpha-tubulins seen in other organisms. Partition homogeneity analysis shows that the foraminiferal beta-tubulin gene has followed an evolutionary path that is distinct from that of all other organisms. Our findings indicate that positive selective pressure occurred on the beta-tubulin subunit in ancestral forams prior to their diversification. The specific substitutions observed have implications for microtubule (MT) assembly dynamics. The regions most strongly affected are implicated in lateral contacts between protofilaments and in taxol binding. We predict that these changes strengthen lateral contacts between adjacent dimers in a manner similar to that induced by taxol binding, thus allowing the formation of the tubulin "helical filaments" observed in forams by electron microscopy. Our results also indicate that substantial changes to these portions of the beta-tubulin molecule can be made without sacrificing essential MT functions.